
· - // ~ / -

ii";~~~~~~~~~
~~ ~~~~~~~~~~~

. .;- .

,'
,''

' ' "- x - r / ~

·;~~~~~~~~~~~~~~~~ L', --- ,'- .') ll~,'~l.1
'i

..-. , ,

il - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-~_.' > . ~ -.... ~.~ '.:--

.{ , I ·, ~.
.

t
...'

I~~ ~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~' .' 'u· . ,

-~~
~~~~~~ 

, :-. 
, 

x
:1 :~~~~~~~~~~~: "-, ,"- .

,.--IJ~ ~ ~~ ~~~~,:, ~. ..,*',',-

'- .C·· : - P- ?, --.' ... ~' " )' 
~~~~~~~~~~~~~~~~~~~.- " -

'
:' " -- : / . ' ' - " , '>

,- .. , i / ---~.. .~~~~N7-56 , .

·,
G.30

e--8

--. ' I ~~~~~-; ' , . ~ '~

. ,.~5 .'r ,,%' : u--' ,M A~1 9 ~

;r~ ~ ~ ~~~~~~~~~~:- ;:">'"-. -'~,".- h . ' :?~-'

- ·--/~..5

.'~~~~~~ : .R·-:- : ~ ·F·.~/' - i:i~ x'- , ,

·,

Z .. - <-," ~ - . . ~ , . ' - ' - , q "~'
:::~~~~~~~~~~~~~~~~~~~~- . ~' , J : ' ~.

' /· '- ' -. I -. .~~~~- .+ ~...~''
~,~h: j " ' - ' " . . ~"."~ ~ -- ¥ t ~

: -~'l:" /-' .z_~ .. , ~ - ' .x' , '~5.~ .

.. i , /- -,F LD ~/ . · . ~ \ ,, r ~
:u;~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~:,5_ ·'` r _~_ --. --

~:~": _ _ . , _

X-641-73-4

COMPUTER SOFTWARE DOCUMENTATION

P. A. Comella
Laboratory for Space Physics
Goddard Space Flight Center

Greenbelt, Maryland

January 1973

t

I

CONTENTS

Page

ABSTRACT i

I. INTRODUCTION 1

II. WHY DOCUMENTATION? 1

III. THE DIFFICULTY OF ACHIEVING GOOD DOCUMENTATION - 4

IV. THE CONTENTS OF DOCUMENTATION .* 5

V. THE QUESTION OF STANDARDIZATION 10

VI. A METHODOLOGY FOR SOFTWARE DOCUMENTATION . . . 13

A. PROBLEM DEFINITION 15

B. SYSTEM DESIGN 19

VII. DEVELOPING DOCUMENTATION TOOLS 26

VIII. CONCLUSION 27

BIBLIOGRAPHY 28

I1

COMPUTER SOFTWARE DOCUMENTATION

P. A. Comella
Laboratory for Space Physics
Goddard Space Flight Center

Greenbelt, Maryland

ABSTRACT

This paper is a tutorial in the documentation of
computer software. It presents a methodology for
achieving an adequate level of documentation as a natural
outgrowth of the total programming effort commencing with
the initial problem statement and definition and terminating
with the final verification of code. It discusses the
content of adequate documentation, the necessity for
such documentation and the problems impeding achievement
of adequate documentation.

iI

1

I. INTRODUCTION

The sad state of computer software documentation

is a thorn in the side of all associated with the computing

field. The literature abounds with advice concerning the

content and the format of documentation [1,2,7,8,12,15].

Managerial seminars develop methods to cajole and

coerce designers, programmers, coders et al. to document

[25,26,27,28]. But the problem remains.

From the midst of the lamentations and hand-wringing

over this plight comes a cry - a very loud and very persistent

- "Standardize the Format of Documentation". Other voices

suggest alternatives [3,5,16,19,20,21].

This paper investigates the area of computer software

documentation: the problems, the necessity of solving

these problems, the content of adequate documentation,

methods of documentation and an evaluation of them. It

discusses a methodology for achieving a good level of

documentation and the implications of this methodology in

the areas of system design, programming, coding, testing

and debugging. Lastly, it suggests areas where it is

feasible to develop realistic tools which could aid the

documenter in his documentation efforts.

II. WHY DOCUMENTATION?

Any manager who has faced the problem of project

continuity in the face of employee turnover knows "why

documentation".

2

Any designer modifying an existing system or merging

his system with an existing system comprehends "why docu-

mentationS.

Any programmer modifying an existing program or inter-

facing his procedure with another's routines understands

"why documentation".

And, of course, let us not forget the user, who

wishing to use the fully operational, completely debugged,

exhaustively tested system, must find out:

1) how to use it; and

2) having used it must ascertain why his data

caused an abnormal termination of the system with no

output clues as to the cause of termination.

He, assuredly, understands "why documentation".

Good documentation because it is inextricably bound

up in each facet of the project from conception and design

to coding, testing and acceptance, results in a formalization

of the programming effort and this formalization serves as a

discipline in creating a programming methodology out of

what is, today, still much of a programming art.

Good documentation is an historical record of the

implementation of a system. It is a vehicle for communi-

cating the intended functions of the system, the actual

functions of the system, and how the system performs these

functions. It provides evidence that the system works.

3

Good documentation also communicates what the system

is NOT supposed to do. This is very, very important.

After all, the system consists of a finite set of imperatives

which can operate on a bounded set of data and it is

absolutely essential to know what limitations the system

imposes. Thus, the user can know whether the system,

operating on his set of data, will output a correct solution.

If not, he can discover whether the system is modifiable

to his needs and if so what is necessary to modify it.

Good documentation, in its archive function, can

also serve as a tutorial in systems design, programming

and coding and can result in an improvement of methodologies

in these areas.

Good documentation in requiring clear expression of

concepts, definitions and functional specifications can

prevent distortion of ideas that result in a system's being

improperly or suboptimally implemented. It is a tool for

project control and evaluations because its production and

completion at each phase of a project demonstrates that

the phase itself is completed satisfactorily. It is the

project's working paper. It makes the system implementation

visible and allows for orderly development of subsystems.

Good documentation is also a record of design phase

decisions, a record of the alternatives chosen and why as

well as a record of the alternatives rejected and why.

It is a record of the implications of the decisions: an

explanation of the behavior of the system in its operating

4

environment - a critical inclusion for change of environment

frequently results in system malfunction, the result of

some unnoticed and undocumented hardware (or software)

dependency absent in the new environment.

Ultimately, properly executed documentation frees

resources, both human and computing: those consulting good

documentation can ascertain the scope of a system and hence

evaluate whether a given system is obsolete and should be

scrapped or is functional but should be modified or extended.

What and how to modify or extend is evident as well as

the side-effects of such amendations. Thus good documentation

helps to reduce duplication of human effort and unnecessary

redundancy in computer systems.

III. THE DIFFICULTY OF ACHIEVING GOOD DOCUMENTATION.

Whenever the documentation effort is not reviewed as

an if and only if proposition vis a vis the design, programming

and coding effort, the documentation is apt to be inadequate

or non-existent. At most it becomes an afterthought of

dubious utility, a boring exercise inattentively executed.

Documentation is an area of the computing field where

computing personnel demonstrate the least competence. After

all, who has learned to document? Programmers are taught

to CODE in whatever the programming language! Not much stress

is laid on program design and the documentation usually

consists of a minimally, internally annotated program that

executes a test case of not necessarily critical importance.

5

Little value is placed on the importance of the design and

design decisions while the executing code regardless of its

goodness is of premium value. Where is the incentive to

document?

Adequate documentation can never occur until the design,

programming, coding, etc. are regarded as completed if and

only if the documentation is completed.

Lastly, proliferation of hardware devices, programming

languages and their accompanying compilers, and software

systems, coupled with inadequate assessment of existing

documentation procedures, make it difficult to formulate

documentation procedures that really work.

IV. THE CONTENT OF DOCUMENTATION

Documentation communicates a message - here a (total)

description of a computer software system. Ideally any query

concerning the software system will find its answer in the

message of the documentation for that system. Of paramount

importance is the content of documentation (not necessarily

its format). Documentation must communicate effectively

concerning the proper operation of the given software system.

It must describe the system itself as well as the resources

/used to develop the system. It must describe the environment

of the system and the sub-systems that comprise the system.

It must describe the problem that generated the idea for the

system, i.,e. the purpose of the system. It must describe

the input set, i.e. the solutions, and the algorithms

6

and procedures which transform an input subset into the

appropriate output subset.

Efficient documentation has as its offspring the

generation of new concepts and the revision of old methodologies

in problem solving because the system development has become

visible, available and complete and hence evaluable.

There is broad general agreement concerning the content

of documentation. Basically adequate description of a

computer software system involves:

1) documentation for management functions

2) documentation for user functions

3) documentation for operational functions

4) documentation for analysis, design and programming

functions

Documentation for management is a justification of the

system. It outlines the problems and needs prompting the

proposal of the new system (or existing system modification)

and the benefits which will accrue because of its implementation. It

i s a statement of the broad conceptual design of the proposed

system with particular emphasis on its being a good solution

to the problem in comparison with other alternatives. It

provides facts in the realm of dollars and cents, personnel

requirements, time schedules, computer resource requirements

necessary for measurement and evaluation of the system and

for sound management decision-making. The format of the

presentation must be satisfactory to management and is not

7

the subject of this paper. For discussion of format and

other specifics of management requirements, see references

[7,12,25,26,27,281.

Documentation for user functions consists of a general

system description with appropriate definition of terms

enabling the user to ascertain the functions of the system and

its limitations, the flow of the system, the domain of the

input, the range of the output, the algorithms and procedures

that transform the-input into output, the procedures for

preparing input, the error handling procedures for detection

of bad input. It contains instructions for preparing the

input and illustrative test cases. Gray and London [12] discuss

user documentation in adequate detail although from the point

of view of star.lardizing documentation.

Documentation for operational functions describes the

environment in which the system must operate; the hardware

devices required, their configuration and set-up. It tells

how to start up the system as well as how to restart in case

of failure. It identifies the I/O devices and files and

contains a detailed description of the data preparation

procedures. It states storage requirements both main and

peripheral and timing requirements: CPU and I/O in meaningful

units(perhaps defined within the body of the documentation).

Again Gray and London [12] is a good reference for content of

operational documentation.

Documentation for analysis design and proqramming functions

is the category of documentation which is the subject of this

paper.

Analytical documentation is a detailed statement of

the problem and design. It defines the problem completely

according to its input, output and the functional specifications -

the sequence of logical states transforming the input to output.

It defines the operating environment of the system - the

computer and peripheral devices, the operating system, the

command and control language, and the programming language(s)

of the implementation. It defines (and orders with respect

to implementation) the sub-systems comprising the system with

their appropriate task generations; the structure of the

data base containing the input files to the system as well

as the output files. This includes the assignment of files to

specific hardware devices, data set name by which the file is

known to the system, organization of the file and format of

records within files and the relation of contents to input/

output or intermediate processing. It discusses file maintenance

in terms of the update and retrieval mechanisms. It creates

the testing systems and sequences stating critical test points

and paths and acceptance criteria. In the functional specifi-

cations it notes explicitly where errors can be detected and

how such errors are to be handled.

The analytical documentation imposes structure on the

problem definition, translating the initial statement into a

meta-language from which restatement the problem can be trans-

lated (directly) into the selected programming language(s). ..
.......... X ...

9

It specifies, as noted above, the order of tasking and sub-

tasking to occur in the system implementation and the order of

programming the functional specifications, thus, indicating

the general logic flow and control of the system . It

specifies the structure of the data base and defines the files

comprising the data base. It describes the content and format

of the files. It specifies the interfaces with the operating

system and explicitly states what the system can and cannot do.

In this design phase, too, the testing specifications are

written.

From the analytical specifications the programs are

designed. Programming documentation describes the algorithms

and procedures of the functional specifications, the detailed

logic of each procedure which transforms the procedural

input to procedural output. It specifies the interfaces with

its sub-systems. (All of this should occur in a meta-language

of the programming language chosen. For example, if the

selected programming language is ALGOL the logic should be

written in ALGOL-like constructs). It defines the variables

and functions used in the computations. From these programming

specifications the coding can directly proceed. The coded

program forms an integral part of the documentation. It is

especially valuable where cross-referencing with programming

documentation is present. (Appropriate tools for clarification

in this phase of the documentation might include glossaries

and indexes to provide definitions and cross-referencing,

schematics and figures to illustrate logic flows and the

10

structure and contents of the data base).

This explicit statement of the analysis, system design,

programming and coding is the documentation.

V. THE QUESTION OF STANDARDIZATION

The question of standardization is implicit in any

discussion of documentation. As suggested in the introduction

management solutions to the documentation problem frequently lie

in the realm of standardization of the format of documentation.

Part of the rationale behind this leaning towards

standardized formats is the idea that:

1) anyone can fill out a form with proper guidance;

thus;

2) the documentation problem becomes a managerial

problem with attendant solution lying in the

comprehensible (to management) areas of forms design,

forms distribution and on-the-job training.

There is another reason, however, more obscure but more

insidious in its pervasive influence on the computing industry -

an under estimation of the complexity of the mechanisms and

methodologies of problem specification and systems design and

implementation. Dijkstra has stated this quite eloquently [9].

Thus, while management's aim is to achieve a system of

documentation that is easy to prepare (thinking that is why

people don't document), comprehensive in its description of

the problem, solution and use of the system, it sabotages its

goal to a large extent, not by its insistence on standardization

per se bt by its selection of format as the criterion for

standardization.

11

Standardization imposes a discipline on the user of the

standardized procedure and so creates a focal point in the

approach to a problem. Thus, in this case management has

made the format and not (necessarily) the content of document-

ation, as originally intended, the focus of the documentation

effort. But the critical need is how to create well-designed

and implemented systems that are adequately documented: to

do away with the transformation of input to output via alchemy

with the functional specifications tucked away in the privacy

of the author's mind. This writer is convinced that people

don't document because they, recognizing that documentation

is part of software development inseparable from the

analytical, design, programming, coding and testing phases,

don't know how to achieve this integration of documentation

with the problem definition and solution. And to resolve this

frustrating dilemma they skirt the documentation issue and

thus diminish their powers of creativity in system design

and implementation: this lack of graphic statements leads

to imprecise sub-optimal systems containing (undocumented)

side-effects.

So it turns out that management has pinpointed the

solution - standardization - but related it to the wrong

problem - the format!

But if the solution of standardization is applied to the

problem of content it becomes apparent that the proper thrust

12

should be towards developing a methodology of problem definition,

systems design and implementation out of which flows naturally

the documentation.

The next section is a discussion of such a standard -

the methodology of top-down definition, design, programming,

coding and testing. The methodology has implications in the

critical areas of demonstration of program correctness, test

and validation of systems, and debugging of code. Dijkstra [9],

Mills [19,20], and Parnas [21,22] have excellent articles

describing implementations employing this methodology.

The immediate consequences, in relation to the topic of

software documentation, of this methodology are as follows:

1) the problem is well-defined and documented

2) the design, programming and coding are well-considered,

approach optimal and are documented

3) the system is usable, amendable and extendable and

the know-how is in the documentation

4) critical parts within the program are noted and the

testing documentation explicitly demonstrates the

operation of the code along these paths. Demonstration

of program correctness becomes feasible.

Thus the system is well-executed and the documentation

is well- executed. Furthermore, and very importantly, the

content of the documentation is a natural outgrowth of the

system implementation.

13

VI. A METHODOLOGY FOR SOFTWARE DOCUMENTATION

This section describes a highly structured top-down

approach to the problem of generating a software system

and its attendant documentation. It is analogous to the

construction of a tree with the root of the tree the

problem statement; the first level the embedding of the

problem-in its operating environment; the second level the

specification of internal system invariants and the

interfacing of these invariants with the external environment;

the third and deeper levels the representation of the

functional specifications and sub-specifications in such

a way that those specifications in closest propinquity to

the root exert the greatest influence in constraining

the system to meet problem objectives. Furthermore, the

outer level nodes always determine the interfaces with nodes

at the next most inner level. Influences and constraints

percolate downward, never upward or laterally.

The aim will be to establish an equivalence (in meaning)

between the system and its documentation and to allow the

documentation to keep abreast of system development.

The raison d'etre for a top-down approach to systems

design and programming lies in the fact - as Hoare [14] so

aptly states: ". . . all of the properties of a program

and all of the consequences of executing it in any given

environment can, in principle, be found out from the text

of the program itself by means of purely deductive reasoning,"

14

(p. 576). Armed with this knowledge it makes sense to

derive a methodology that makes it possible to approximate

this realization.

Dijkstra ahdMills [9,19,20] among others advocate the

application of the concepts of structured programming - a

method of programming requiring all functional specifications

of a procedure to be expressed using only the following

forms of statements:

1) sequence

2) if . . . then . . . else

3) do . . . while

with all functional specifications having but one set of

input and one entry point and but one set of output and

one exit point. (This advocacy of go-to-less programming

has its origins in the theorems of B6hn and Jacopini [4].

From the point of view of documentation, verification and

testing of systems such as approach is highly desirable

because given a program written without go-to's much can

be said about whether the program does what it is supposed

to do.

However, because a go-to-less language may not be

available to the reader of this paper, the subject of

structured programming will not be pursued further here,

but instead the paper will describe a top-down methodology

embodying the spirit of structured programming. (As an aside,

Mills claims such aims can be achieved even with the

'go to' allowed [20]).

15

The discussion will suggest a methodology for problem

definition, system design and specification, including

testing procedures, program design and coding, all with a

view towards producing an optimal system optimally documented.

A. Problem Definition

The first step is to wrest the problem statement

from the requestor in order to arrive at a problem definition.

The guiding principle must be the realization that there is

almost always dichotomy between what the user really wants

or can have and what he thinks he wants - this is particularly

true of the naive user of computer systems.

Thus, the designer (consultant) in eliciting the request

must also elicit the purpose of the request. This will aid

him in pursuing a line of questioning, the answers to which

will culminate in a workable problem definition. The user,

while comprehending that total implementation will frequently

occur through time, i.e. the implementation will occur in

stages - frequently operates under the premise that problem

definition should likewise take place across time. This is

an erroneous viewpoint having as end result - even under an

assumption of correct problem definition - which is unlikely -

suboptimal design, patched programs and code, introduction

of undesirable side-effects and excessive debug time! The

designer must assist the requester in achieving a correct,

and complete statement of the problem before proceeding with

design and analysis.

16

Secondly, the designer must ascertain what are actually

system parameters and what are system invariants. Here,

particularly in a modeling situation the "solution" is

frequently only a prelude to the solution and the "constants"

but zeroth order estimates of the solution constants (this

may motivate a design embedding no constants within the

body of the functional code). Frequently, too, entire

sections of code will be replaced: the functions themselves

are parameters and will undergo tremendous revision. Such

considerations, if known beforehand, can influence the

design hugely, while lack of knowledge of this consideration

can render the procedures difficult to modify. Forewarning,

too, might influence the designer to choose a high level

programming language for which an optimizing compiler

exists so that functions can be readily coded and modified.

Another area for scrutiny is the output specifications.

The user requests what he knows about and what he thinks

expeditious. Underlying a request for tabular output

may be a need for plotting because the user is unknowledgeable

concerning capabilities for computer plotting or because he

thinks it will take too long to include the plotting right off.

It is best to elicit these needs before the programming

design and coding commence, for even if the initial imple-

mentation does not execute these options a place in the

code can be set aside for later insertion of code using

dummy procedures, etc. This is superior to patching a running

17

program: patching frequently introduces side-effects,

increases the difficulty of testing and debugging and

decreases code readability. It is necessary to note here

that testing is a design function: the testing specifications

flow from the design considerations and the problem specifi-

cations.

Input considerations are of crucial importance, too.

It is necessary to know the, answers to these questions before

proceeding with system design:

What is theinput?

Where do thedata come from?

What does the input look like?

Is its format inflexible? This is very important.

Many times the fixed formatted data is actually variable

and the coding based on the fixed format premise, while

efficient, has constrained the design too strongly percolating

its influence through many levels of coding so that changes

in format require - sometimes - major code revisions

and that inevitable patching. The designer must be aware

of this problem and must make the requester cognizant of

the implications of his specifications. Thus, the designer

must make certain that the requestor can really live with

his specifications.

On the other hand, there are certain data sets whose

formats are invariant (tapes from a satellite, for instance)

but which could contain errors. Thus, the problem of error

detection and error handling and correction requires attention.

18

What is the probability of error occurrence?

Of what type?

What is to be done when the error occurs - abort, ignore,

correct?

What are the indications that an error has occurred?

The relative sophistication of the expected user is

also a consideration in the design of the input subsystem.

On output design decisions are made concerning output

media, optionality of output data sets, format of solution

data sets, content, format and location (on-line or off-line

with respect to the solution data sets) of error messages

of adequate content to locate the source of error - a

challenging problem.

The requester must understand the importance of the

problem statement - the completeness of the statement ultimately

determines the implemented system's usability.

The last phase of these pre-design consultations is

the presentation of the request - as the designer perceives

it - to the requestor (preferably for his signature) - this

signals concurrence with the problem statement and enables

the designer to proceed to the analysis and design of the

system.

Addenda and amendations to the proposal should be stated

in writing - problems can undergo striking metamorphoses in

the course of development and to maintain clarity of problem

definition and requester - designer accord such a policy is

wise.

19

This phase completed the problem at that given instant

of time is defined. This definition can be achieved even

in a research environment - a point that is frequently

argued as not possible - because the problem statement

clearly indicates the variables and constants of the system

Even though it is not explicitly known when or how

parameters will change in the course of development it is

known that they may and the design can allow for this. Thus,

from the design point of view the problem is defined.

B. The System Design

With problem statement in hand the designer commences

the analysis and specification of the system - the problem

solution.

In the top-down approach, given the problem statement

and a definition of the available computing resources, the

designer proceeds to define the problem as a system embedded

in an environment composed of a subset of these resources:

hardware devices, operating systems, compilers, assemblers,

etc. Criteria for selection of each resource are explicitly

stated as well as the implications, i.e. constraints imposed

by the selection. Reasons for rejection of alternatives -

where available - are also explicitly stated.

This environment with its attributes exerts external

influences upon the developing system, independent of the

constraints which the problem statement imposes. But it is

critical to note: the external environment acts first and

the system must conform to these external behavior demands

20

before it can respond to the internal demands of the problem

itself. Consequently, in the top-down methodology the

control commands that correctly interface the embryonic

system with its outside world are written first. This places

the problem definition in a proper perspective; but not

only that, it makes the system in skeleton form known to the

computing system.

And, much to the joy of all concerned, satisfies

that magical need to get running - but in a very special way -

a hierarchical way such that encompassing code is always

executing and "fully" tested before the next lower level

of executable code is created and integrated into the system.

"Fully" means at least to the point of determining the

syntactical validity of constructs.

Now the system communicates with this environment not

only through this command and control language but also through

its I/O requests. Furthermore, it is usually in terms of

I/O that the user has stated his most stringent, least flexible

requirements: in terms of satisfaction of user requirements

the I/O area can be most critical.

Thus, it is good top-down philosophy to define these

communication paths at the next level; in IBMese the medium

would be the Job Control Language (JCL). The JCL specifications,

however, are a function of the data base design. Hence,

creation of JCL controlling user I/O requests implies prior

definition of the data base characteristics: the files

comprising the data base; the format (organization)of each

21

of these files, the data set names referencing these files;

the criteria stipulating the organization and the implications

of the type of organization selected. (Schemata and tables

serve useful purposes in illustrating the structure of data

bases and organization of files).

This JCL funnels user input through the system

environment connecting it with its processing program for

functional transformation into output conforming with user

requirements and transfers these results to the appropriate

output media.

Thus, this data base and its JCL connect user to system

and force compliance with the user's most stringent requirements

at the outermost levels.

Next comes the creation of the control and functional

code in order of dominance commencing with the coding of the

critical nucleus (that section of code which controls the

primary specification of functions) and tasksits testing

and integration into the system as follows:

1) Nucleus of control code for the i+lst level is

created at the ith level; functional code created at the

i+lst level has its interfaces defined at the ith level and

only at the ith level;

2) The i+lst level of code is tested and integrated with

the system (which exists, is executing and has been implemented

and tested through the ith level of definition).

Steps 1 and 2 are iterated until the system is fully implemented.

22

It is important to note several features of this top-

down methodology:

1) The programmer is able to carry out his design

structure in code

2) The programmer is able to design a testable system

3) The documentation is a natural outflow of the design

and test functions. The following paragraphs amplify these

points.

Sub-task specification and functional specifications

are always carried out in executable code; for example, the

appearance of a CALL SUBR (ARGI, . . ., ARGN) in the i level

of code signals (and is the only signal) the design need to

create at the i+lst level of code a procedure, known to the

system by the name SUBR which operates on the input, (an

already defined subset of the arguments, ARGI,. . .) to

produce the output, (defined within SUBR as a subset of ARGI,

. . .). Further, the function (sub-task) is always referenced

through its interface defined at the supervisory level; (ideally)

each function (sub-task) reports to one supervisor only (to

minimize connectivity see below).

Observe: only that information which enables the function

to be correctly coded without introduction of upward or lateral

side-effects is supplied in the interface, nothing more and

nothing less. The aim here is to minimize program connectivity -

connections are assumptions that modules make about one another -

and to prevent, in modification of a module, violations of

assumptions other modules make about the module being changed.

23

(Here, to modify one simply proceeds down the code-tree

to the affected node(s) and replaces the function or task

by another which satisfies the same criterion of correctness).

Sub-task specification permits maintenance of program

integrity and permits demonstration of program correctness -

the documentation of the specifications; while the bottom-up

approach of supra and lateral task specifications pays

inadequate attention to the testing problem - the uncovering

of errors, the debugging problem, the locating of the roots

of the error and their subsequent correction, and the

connectivity problem, all of which have repercussions

in demonstration of program correctness and hence documentation.

Aspects of testing must enter into design-stage decision

making so that the resulting system has the following

characteristics:

1) The structure of the program forms the basis for

design of the test

2) the number of relevant states (states to be tested)

is of reasonable extent

3) the relevant states are indeed testable.

Test planning proceeds as follows:

1) determination of the extent of testing

2) identification of testable states

3) ranking of testable states in order of importance

according to criteria derived from critical properties the

problem solution must possess in order to satisfy user

requirements

24

4) selection of relevant states using the ordering

of step 3

5) structuring of program design so that these relevant

states are testable

6) development of a set of test data which forces

the system into all of its relevant states

7) verification of code by execution of the program

using the test cases. Note: the statement of properties

which the system must have to satisfy user requirements

influences the test plan most strongly. This statement is

a series of assertions describing the behavior of the program,

that is, the effects of computation on the input set.

Such assertions occur:

1) at the end of program/procedure stating what the

correctness of the program/procedure means

2) at the start of the program/procedure concerning

satisfaction of initial conditions

3) at some point along each loop

4) at points of functional specifications

The test plan incorporates these assertions into the

program. Execution of the test cases demonstrates program

correctness as follows: whenever the initial conditions

are true and the assertion is true at each critical point

along the path then the final assertion is true. Conversely,

if the program fails at some point, the path output can

locate the source of the error, thus expediting correction.

25

Note: The test plan code is permanent code optionally

executed - it is an inherent part of the documentation indicating

relevant states, critical paths and assertions. Test plan

code is necessarily executed during initial.system creation

and subsequent modification phases.

The test plan discussed in.the preceding. paragraphs is

an integral part not only of the program structure but.

also of the documentation: -execution of. the. test cases:.

1)- demonstrates that the program does what it- is

supposed to do

2) facilitates system modification -. in fact, renders

it feasible

3) demonstrates:what transformations algorithms and

procedures effect upon.. their set of :input data

- all primary:-functions :of documentation.:,

Lastly, in the.top.-.down methodology the program.itself

becomes a high level flowchart. The outermost levels of

the code synopsize the:.program.:. Functional specifications

are known at their point of origin in the parent nodes by

their symbolic source language names. :Also,' their interfaces

are explicitly stated in. these references,.

Finally, each "box" of this flowchart - node of the.code-

tree - with its combination of control code defining functional

specifications at the next inner level and functional code

operating on input data designated at the immediately outer

level is a natural unit of documentation. For greater readability

Mills [20] advocates limitation of unit size to one page of a

computer program libting.

26

In conclusion, the top-down methodology structures

the entire development of the problem solution, standardizing

the approach to the analysis, design, programming and

coding functions with the outcome of well designed systems,

properly coded and tested and adequately documented.

VII. DEVELOPING DOCUMENTATION TOOLS

This section briefly suggests two areas of attention

which might offer some opportunities for amelioration of the

documentation problem.

The classroom occupies an inadequate place in the docu-

mentation effort, its potential as a maker of documentation

tools - the programmer, himself, largely ignored.

For the most-part programming courses are coding courses.

Instructors almost invariably, stress the coding aspects

of projects, indicating to students that cute working code

is of inestimable assistance in earning the coveted high

grade. Daily admonitions concerning the limited time

remaining to get running and debugging drive the student

to frenzies of coding and debugging. The design, analysis

and documentation aspects of programming as well as their

interrelationships receive scant attention. The result -

a code first, document later mentality permeates the computing

field!

The solution - the development of curricula for programming

courses which place coding in its proper relationship to

analysis, design, programming, testing and documentation - and,

the use if must be, of that infamous lever, the grade, to

27

underscore the necessity of adequate analysis, design, testing

and documentation in the total effort.

Another potential tool is the use of syntax-directed

compilers such as Wirth has developed for PL/I (see Mills

[19]). This compiler constructs questions from the program

being compiled for the programmer's later answering on an

interactive system. This effort provides a standard way

to elicit programmer response to specific questions regarding

his program, the questions themselves,the result of compiler

analysis of the program.

VIII. CONCLUSION

Only those programming methodologies which integrate

the analysis, design, programming, testing, coding and

documentation efforts can have as output well designed

systems, adequately documented. This paper describes such

a methodology.

28

BIBLIOGRAPHY

1. ADP Documentation Handbook, Social and Rehabilitation

Service, PB-198085, September 1971.

2. A Programmer's Guide to the Goddard Space Flight Center

Computer Program Library, X-540-72-114, NASA, GSFC,

February 1972.

3. Baker, F. T., Chief programmer team management of

production programming, IBM System Journal 11, No. 1,

56-73 (January 1972).

4. B6hm, Corrado and Giuseppe Jacopini, Flow diagrams, Turing

machines and languages with only two formation rules,

Communications of the ACM49, No. 3, 366-371 (May 1966).

5. Chief Programmer Teams: Principles and Procedures,

Report No. FSC 71-5108. International Business Machines

Corporation, Federal Systems Division, Gaithersburg,

Maryland (June 1971).

6. Collins, B. D. and N. B. Acker, Documentation and debugging,

Data Management 8, No. 9, 107-115 (Sept. 1970).

7. Computer Program Documentation Guideline, NHB 2411.1,

National Aeronautics and Space Administration, Washington,

D. C., July 1971.

8. Computer Program Systems for ADP Management: Documentation

Standards, X-502-70-157, NASA, GSFC, December 1969.

9. Dijkstra, E. W., The structure of "THE" multiprogramming

system, Communications of the ACM 11, No. 5, 341-346

(May 1968).

29

10. Elmendorf, W. R., Disciplined software testing, Debugging

Techniques in Large Systems, 137-139, Prentice-Hall, Inc.

Englewood Cliffs, N.J., 1971.

11. Floyd, R. W., Assigning meanings to programs, Proceedings

American Mathematical Society Symposium in Applied

Mathematics 19, 19-31, (1967).

12. Gray, Max and Keith London, Documentation Standards,

Brandon/Systems Press, Inc. Princeton, N.J., 1969.

13. Hill, P. B., The control of large scale software projects,

IAG Journal 3, No. 12, 394-405 (December 1970).

14. Hoare, C. A. R., An axiomatic basis for computer programming,

Communications of the ACM 12, No. 10, 576-580, 583

(October 1969).

15. Howarth, R. J. and A. L. Lin, An approach to program

documentation, Computer Bulletin 13, No. 8, 291-295

(August 1969).

16. J. Katzonelson, Documentation and the management of a

software project - a Case Study, Software-Practice and

Experience 1, April-June 1971.

17. King, J., A verifying compiler, Debugging Techniques in

Large Systems, 17-40, Prentice-Hall, Inc. Englewood

Cliffs, N.J., 1971.

18. King, P.J.H., System analysis documentation: computer

aided data dictionary definition, Computer Journal 12,

No. 1, 6-9 (February 1969).

30

19. Mills, H. D., Syntax directed documentation for PL360,

Communications of the ACM 13, No. 4, 216-222 (April 1970).

20. Mills, H. D., Top-down programming in large systems,

Debugging Techniques in Large Systems, 41-55, Prentice-

Hall, Inc., Englewood Cliffs, N.J., 1971.

21. Parnas, David L., Information Distribution Aspects of

Design Methodology, AD-719863, February 1971.*

22. Parnas, David L. and John A. Darringer, SODAS and a

methodology for system design, AFIPS Conference Proceedings

31, 449-474(1967).

23. Perry, James W. and William Goffman, Mathematical

Formulation of Basic Procedures in Documentation,

AD-429098, April 1960.

24. Schlender, Paul, Application of disciplined software

testing, Debugging Techniques in Large Systems, 141-142,

Prentice-Hall, Inc., Englewood Cliffs, N.J., 1971.

25. Schwartz, M. Herbert and Bruce Beardsley, Systems proposal

documentation for senior management, Data Management 8,

No. 9, 88-93 (September 1970).

26. Senensieb, N. Louis, Principles of systems *analysis

and design, Data Management 8, No. 9, 19-23 (September 1970).

27. Verstandig, Harry, B., A Modular Approach to EDP Documentation,

Journal of Data Management 7, No. 7, 18-23 (July 1969).

28. Wofsey, M. M., Systems development, conversion and

operating plans, Data Management 8, No. 9, 64-65 (September

1970).

NASA-GSFC

